Posts

How to Establish your Next-Gen Data Center Security Strategy

In 2019, 46 percent of businesses are expected to use hybrid data centers, and it is therefore critical for these businesses to be prepared to deal with the inherent security challenges. Developing a next gen data center security strategy that takes into account the complexity of hybrid cloud infrastructure can help keep your business operations secure by way of real-time responsiveness, enhanced scalability, and improved uptime.

One of the biggest challenges of securing the next gen data center is accounting for the various silos that develop. Every cloud service provider has its own methods to implement security policies, and those solutions are discrete from one another. These methods are also discrete from on-premises infrastructure and associated security policies. This siloed approach to security adds complexity and increases the likelihood of blind spots in your security plan, and isn’t consistent with the goals of developing a next gen data center. To overcome these challenges, any forward-thinking company with security top of mind requires security tools that enable visibility and policy enforcement across the entirety of a hybrid cloud infrastructure.

In this piece, we’ll review the basics of the next gen data center, dive into some of the details of developing a next gen data center security strategy, and explain how Guardicore Centra fits into a holistic security plan.

What is a next gen data center?

The idea of hybrid cloud has been around for a while now, so what’s the difference between what we’re used to and a next gen data center? In short, next gen data centers are hybrid cloud infrastructures that abstract away complexity, automate as many workflows as possible, and include scalable orchestration tools. Scalable technologies like SDN (software defined networking), virtualization, containerization, and Infrastructure as Code (IaC) are hallmarks of the next gen data center.

Given this definition, the benefits of the next gen data center are clear: agile, scalable, standardized, and automated IT operations that limit costly manual configuration, human error, and oversights. However, when creating a next gen data center security strategy, enterprises must ensure that the policies, tools, and overall strategy they implement are able to account for the inherent challenges of the next gen data center.

Asking the right questions about your next gen data center security strategy

There are a number of questions enterprises must ask themselves as they begin to design a next gen data center and a security strategy to protect it. Here, we’ll review a few of the most important.

  • What standards and compliance regulations must we meet?Regulations such as HIPAA, PCI-DSS, and SOX subject enterprises to strict security and data protection requirements that must be met, regardless of other goals. Failure to account for these requirements in the planning stages can prove costly in the long run should you fail an audit due to a simple oversight.
  • How can we gain granular visibility into our entire infrastructure? One of the challenges of the next gen data center is the myriad of silos that emerge from a security and visibility perspective. With so many different IaaS, SaaS, and on-premises solutions going into a next gen data center, capturing detailed visibility of data flows down to the process level can be a daunting task. However, in order to optimize security, this is a question you’ll need to answer in the planning stages. If you don’t have a baseline of what traffic flows on your network look like at various points in time (e.g. peak hours on a Monday vs midnight Saturday) identifying and reacting to anomalies becomes almost impossible.
  • How can we implement scalable, cross-platform security policies?As mentioned, the variety of solutions that make up a next gen data center can lead to a number of silos and discrete security policies. Managing security discretely for each platform flies in the face of the scalable, DevOps-inspired ideals of the next gen data center. To ensure that your security can keep up with your infrastructure, you’ll need to seek out scalable, intelligent security tools. While security is often viewed as hamstringing DevOps efforts, the right tools and strategy can help bridge the gap between these two teams.

Finding the right solutions

Given what we have reviewed thus far, we can see that the solutions to the security challenges of the next gen data center need to be scalable and compliant, provide granular visibility, and function across the entirety of your infrastructure.

Guardicore Centra is uniquely capable of addressing these challenges and helping secure the next gen data center. For example, not only can micro-segmentation help enable compliance to standards like HIPAA and PCI-DSS, but Centra offers enterprises the level of visibility required in the next gen data center. Centra is capable of contextualizing all application dependencies across all platforms to ensure that your micro-segmentation policies are properly implemented. Regardless of where your apps run, Centra helps you overcome silos and provides visibility down to the process level.

Further, Centra is capable of achieving the scalability that the next gen data center demands. To help conceptualize how scalable micro-segmentation with Guardicore Centra can be, consider that a typical LAN build-out that can last for a few months and require hundreds of IT labor hours. On the other hand, a comparable micro-segmentation deployment takes about a month and significantly fewer IT labor hours.

Finally, Centra can help bridge the gap between DevOps and Security teams by enabling the use of “zero trust” security models. The general idea behind zero trust is, as the name implies, nothing inside or outside of your network should be trusted by default. This shifts focus to determining what is allowed as opposed to being strictly on the hunt for threats, which is much more conducive to a modern DevSecOps approach to the next gen data center.

Guardicore helps enable your next gen data center security strategy

When developing a next gen data center security strategy, you must be able to account for the nuances of the various pieces of on-premises and cloud infrastructure that make up a hybrid data center. A big part of doing so is selecting tools that minimize complexity and can scale across all of your on-premises and cloud platforms. Guardicore Centra does just that and helps implement scalable and granular security policies to establish the robust security required in the next gen data center.

If you’re interested in redefining and adapting the way you secure your hybrid cloud infrastructure, contact us to learn more.

Want to know more about proper data center security? Get our white paper about operationalizing a proper micro-segmentation project.

Read More

Are you Protected against These Common Types of Cyber Attacks?

The types of cyber-security attacks that businesses need to protect themselves from are continually growing and evolving. Keeping your company secure means having insight into the most common threats, and the categories of cyber attacks that might go unnoticed. From how to use the principle of least privilege to which connections you need to be monitoring, we look at the top types of network attacks and how to level up your security for 2019.

Watering Hole Attacks

A watering hole attack is an infected website, where vulnerabilities in software or design can be leveraged to embed malicious code. One well-known example is MageCart, the consumer website malware campaign. There are at least half a dozen criminal groups using this toolkit, notably in a payment-card information skimming exploit that has used JavaScript code on the checkout pages of major retailers to steal credentials.

Last year, Guardicore Labs discovered Operation Prowli, a campaign that compromised more than 40,000 machines around the world, using attack techniques such as brute-force, exploits, and the leveraging of weak configurations. This was achieved by targeting CMS servers hosting popular websites, backup servers running HP Data Protector, DSL modems and IoT devices among other infrastructure. Consumers were tricked and diverted from legitimate websites to fake ones, and the attackers then spread malware and malicious code to over 9,000 companies through scam services and browser extensions. This kind of attack puts a whole organization in jeopardy.

More effective watering hole attacks can be achieved if an attacker homes in on the websites that you and your employees use regularly. On top of this, always make sure that your software is up to date so that attackers cannot leverage vulnerabilities to complete these types of cyber attacks. Lastly, ensure you have a method in place to closely watch network traffic and prevent intrusions.

Third-Party Service Vulnerabilities

Today’s surge in connectivity means that enterprises are increasingly relying on third party services for backup, storage, scale, or MSSP’s, to name a few examples. Attackers are increasingly managing to infiltrate your network through your connection with other businesses who have access to your data center or systems. According to the Ponemon Institute, more than half of businesses have suffered a breach due to access through a third-party vendor, one example being the devastating Home Depot breach where attackers used a third-party vendors credentials to steal more than 56 million customer credit and debit card details.

As well as current suppliers, businesses need to be aware of previous suppliers who might not have removed your information from their systems, and breach of confidentiality where third-parties have sold or shared your data with another unknown party. As such, your company needs visibility into all your communication flows, including those with third-party vendors, suppliers, or cloud services, as well as in-depth incident response to handle these kinds of attacks.

Web Application Attacks

When it comes to categories of cyber attacks that use web applications, SQL injection is one of the most common. An attacker simply inserts additional SQL commands into a application database query, allowing them to access data from the database, modify or delete the data, and sometimes even execute operations or issue commands to the operating system itself. This can be done in a number of ways, often through client-server web forms, by modifying cookies, or by using server variables such as HTTP headers.

Another example of a web application attack is managed through deserialization vulnerabilities. There are inherent design flaws in many serialization and deserialization specifications that means that systems will convert any serialized stream, into an object without validating its content. At an application level, companies need to be sure that deserialization end points are only accessible by trusted users.
Giving web applications the minimum privilege necessary is one way to limit these types of cyber-security attacks from breaching your network. Ensuring you have full visibility of connections and flows to your database server is also essential, with alerts set up for any suspicious activity.

What Can Attackers Do Once They Have Access to Your Network?

Ransomware: Attackers can use all types of network attacks to withhold access to your data and operations, usually through encryption, in the hope of a pay-out.
Data destruction/theft: Once attackers have breached your perimeter, without controls they can access critical assets such as customer data. This can be destroyed or stolen causing untold brand damage and legal consequences.
Crypto-jacking: These types of cyber attacks are usually initiated when a user downloads malicious crypto-mining code onto their machine, or by brute-force using SSH credentials, like the ‘Butter’ attacks monitored by Guardicore labs over the past few years.
Pivot to attack other internal applications: If a hacker breaches one area, they can leverage user credentials to escalate their privileges or make lateral moves to another more sensitive area. This is why it’s so important to isolate critical assets as well as take advantage of easy and early wins like separating the production arm of your company from development.

The Most Common Types of Cyber-Security Attacks are Always Evolving

With so many types of cyber attacks risking your network, and subtle changes turning even known quantities into new threats, visibility of your whole ecosystem is foundational for a well-protected IT environment.

As well as using micro-segmentation to separate environments, you can create policy that secures end points and servers with application segmentation. This helps to stop a breach from escalating, with strong segmentation policies that secure your communication flows with the principle of least privilege.

On top of this, complementary controls that include breach detection and incident response with visibility at their core ensures that nothing sinister can fly underneath your radar.

Understanding the Types of Cyber Threats on the Rise in 2019

Keeping your IT environment safe means ensuring your finger is on the pulse of the latest threats in cyber-security. However, while there are always the latest zero-day threats and new attack vectors, each year we see some fundamental repeats. Often attackers find it easy to penetrate networks that have poor hygiene such as old exploits left unpatched, authentication issues such as a lack of two factor authentication and weak passwords. These types of network threats threaten the security of your enterprise, endanger your public image, and put customer data and privacy at risk.

While some types of cyber threats have been around for many years, as we enter 2019, many are growing in complexity or changing in design. This risk is growing, especially as businesses continue to move their workloads and processes to multi and hybrid-cloud environments. Virtualization and hypervisors, container orchestration, and auto-scaling workloads are all realities of a modern enterprise. If we really think about what was new in 2018 and will surely continue in 2019, it is attackers attacking critical applications, data centers and clouds directly. In order to stay secure, as well as manage compliance and keep control despite potential gaps in vendor security, your own solution needs to step up. Businesses will increasingly need to choose a security solution that can effortlessly manage a hybrid and multi-cloud infrastructure.

Attackers are regularly learning new methods to gain entry or cause damage. Here are the top threats to look out for in 2019.

Direct Attacks on Data Centers and Clouds

What we’ve seen through our work with our customers and through our Guardicore Global Sensor Network is an increase in attacks on data centers and clouds directly. These types of cyber-security threats do not use targeted spear phishing campaigns to gain entry through a user within an enterprise. Instead, we see attackers finding known and zero day vulnerabilities in applications they can reach directly and exploiting these to get inside. In many cases their work is assisted by fundamental weaknesses like insecure passwords and a lack of dual factor authentication. One of Guardicore Labs’ most important finds this year was the Butter campaign. The attacker(s) started their attack by merely brute forcing poorly passworded SSH servers to gain access. Once they gained access – we found attackers moving incredibly easily across these applications and data centers due to poor segmentation.

While these attacks on the data centers are easy to accomplish, they remain difficult to spot. In fact, for some companies, security teams are not even the ones to ring the alarm bell. Dwell time is not reduced or mitigation started with an enterprise finding the attackers and blocking the threat, but with a third-party letting the enterprise know there is something wrong. In some cases this could be White Hat researchers or the customers themselves, and in the case of attackers seeking monetization – it could be credit card or law enforcement companies that notify the compromised enterprise.

Crypto-jacking

Many experts failed to predict the increase of cryptocurrency attacks for 2018, but no one is making that mistake this year. Attackers are often financially-driven, and mining for cryptocurrency is one way to attempt a quick payout, with more guaranteed results than ransomware. Besides merely offering DDoS as RAT as a service to their customers, the attackers are seeking an additional revenue stream. In fact, while crypto-jacking has risen 44.5% since 2017, ransomware has dropped by almost 30%. Mining malware often looks to exploit vulnerabilities such as unpatched software or known bugs such as this year’s Microsoft Windows Server 2003 vulnerability, or the Oracle Web Logic flaw.
The impact of these attacks is huge, and attackers can steal vast amounts of CPU usage from victims, slowing down performance overall and having a negative effect on both business and customers. Like a worm, virus, or other types of cyber-security threats, crypto-jacking attacks can be tough to find, leaving stakeholders using time-wasting trial and error to find the source of the slowdown. Visibility into the traffic on your network is essential, so that you can track CPU usage and compare real-time activity to historical baselines.

APT

An APT is an Advanced Persistent Threat, where an attacker can breach a network and stay undetected for a long period of time. The goal of these attacks is not to cause instant damage or immediately ask for ransom, drawing attention to your breach, but rather to insidiously steal information or security data in an unobtrusive way. An APT could breach your network using malware, exploit kits or by piggybacking on legitimate traffic. This could make it difficult to spot. Once your network is infected, an APT could find login credentials, and then use these to make lateral moves around your data center or wider system.

Origins of APTs are usually found to be state actors – either direct or sponsored government attackers. Probably the best example this year was the Marriott/SPG attack. With a dwell time that began in 2014 the state actor enjoyed great benefit from their access to Marriott’s SPG network. The data stolen included names, phone numbers, email addresses, passport numbers, dates of birth and arrival and departure information.

This personally identifiable data from an attack of this kind could offer an intelligence agency all sorts of very tangible benefits. One example could be the ability to create more legitimate looking false passports with the use of real identification documents.

This kind of breach would also provide actionable tracking information, allowing an agency or a bad actor to track people’s movements. They could see if someone was checking into particular locations or even catch a meeting between multiple people of interest. The data would also allow them to learn travel patterns and even potentially set up intelligence agencies to “intercept” people of interest.
Because APTs and similar types of cyber-security threats are designed to go unnoticed, they can be difficult to spot. Signs to look out for could be unusual network activity such as spikes in data access. Key defense tactics could be isolating critical data using micro-segmentation and using white lists to limit access to only the applications that should be allowed to communicate with one another.

File-less Malware

One dangerous type of attack that is typically found as part of an APT is file-less malware. As the name suggests, a file is never created, so standard antivirus file-based detection does not work against these breaches. While traditionally, file-less techniques were the first step in malware infection, in recent months fully file-less attacks are gaining traction.

These types of network threats often pivot from memory exploits to highly trusted system tools and then move to access of the rest of a network, undetected. The most common kinds of file-less malware attacks are remote logins, WMI-based attacks, and PowerShell or Microsoft Office based. In short – no malware doesn’t mean no breach. Micro-segmentation, especially if done with effective rules and in even more thorough projects down to the process level, can keep your most critical applications safe from lateral moves even within the same application cluster, even against the threats you can’t see coming.

Attacks on Critical IoT Devices

The final and perhaps the most frightening increase we have seen through 2018 is attackers commandeering critical IoT devices. Often unpatched, and residing in what are generally flat networks (ones without any segmentation), medical devices have been a big target in 2018 and are likely to be further exploited in 2019.

Furthermore, “point of sale” systems are another attack environment we’ve seen increase in popularity, as they also often suffer from a lack of patching and security, and are an easy target for both physical and remote attacks.

Recognizing how to Ward off These Types of Cyber-Security Threats

The combination of increasingly complex IT environments and the growing sophistication of cyber threats is a dangerous one. Micro-segmentation technology can reduce the attack surface in case of a breach, isolating attackers and keeping them away from critical assets and sensitive customer data. Building a smart segmentation strategy starts with a map of your entire IT environment, with application dependency mapping to visualize all the communications and flows in your ecosystem. This true visibility and real-time control over your entire infrastructure, from on premises data centers to multi and hybrid cloud IaaS is essential, in 2019 and beyond.

Want to learn more about breach detection to help prevent damage from cyber threats to your environment?

Read More

Considering Cyber Insurance in the Aftermath of the NotPetya Attack

It’s been 18 months since June 2017 when the Petya/NotPetya cyber attacks fell on businesses around the globe, resulting in a dramatic loss of income and intense business disruption. Has cyber insurance limited the fallout for the victims of the ransomware attacks, and should proactive businesses follow suit and ensure they are financially covered in case of a breach?

Monetizing the Impact of Cybercrime

The effect on the IT and insurance industries of last years wave of cybercrime continues to grow as businesses disclose silent cyber impacts, as well as affirmative losses from WannaCry/Petya. The latest reports from Property Claim Services put the loss at over $3.3 billion, and growing.

Despite this, for some businesses, reliance on insurance schemes has proven inadequate. US Pharmaceutical company Merck disclosed that the Petya cyberattacks have cost them as much as $580 million since June 2017, and predicted an additional $200 million in costs by the end of 2018. In contrast, experts estimated their insurance pay-out would be around $275 million, a huge number, but under half of the amount they have incurred so far, let alone as their silent costs continue to rise.

Other companies have been left even worse off, such as snack food company Mondolez International Inc, who are in a continuing battle with their property insurer, Zurich American Insurance Company. Mondolez claimed for the Petya attacks under a policy that included “all risks of physical loss or damage” specifying “physical loss or damage to electronic data, programs, or software, including loss or damage caused by the malicious introduction of a machine code or instruction.”

However, Zurich disputed the claim, due to a clause that excludes insurance coverage for any “hostile or war-like act by any government or sovereign power.” As US Intelligence officials have determined that the NotPetya malware originated as an attack by the Russian military against the Ukraine, Zurich are fighting the claim by Mondelez that they are wrongfully denying coverage.

How Does This Lawsuit Affect the Cyber-Insurance Market Overall?

As cyber crime continues to rise, cyber insurance is understandably becoming big business. For companies deciding on whether to take out coverage, CISO’s need to find space in the budget for monthly costs and potentially large premiums. For this risk to be worthwhile, businesses want to be confident that they will recover their costs if a breach happens.

The insurance pay-outs around the Petya cyberattacks, and in particular the Mondolez case, throw this into question. This is especially true considering the rise in cyberattacks that are nation-backed or could plausibly be claimed to be nation-backed by insurance companies in order to dispute a claim. As regulations change and the US military are given more freedom to launch preventative cyberattacks against foreign government hackers, any evidence that suggests governmental or military attribution could be legitimately used against claimants looking to settle their losses.

The Effect on Public Research

The ripple effect of this could go beyond the claims sector, and have a connected impact on security research, as well as free press and journalism in the long run, something we feel strongly about at Guardicore Labs. Traditionally, researchers have had the freedom to comment and even speculate on the attribution of cyber attacks, through information on the attackers’ behavior behind the scenes and the attack signatures they use. If insurance companies and claims handlers begin using public research as a reason to deny coverage to the victims, this could put research teams in an ethical bind, reducing the amount of public research and the transparency of the industry overall.

How Much of a ‘Guarantee’ Can Security Companies Provide?

The issue of what claims to honor extends to financial guarantees from security companies, not only to insurance handlers. It is becoming increasingly popular to offer guarantees to customers who purchase cybersecurity products, in order to ‘put your money where your mouth is’ on the infallibility of a particular solution.

However, many experts believe that these policies have so many loopholes that they negate the benefit of the warranty overall. One example is the often cited ‘nation state or act of god’ exception, which includes cyberterrorism. Others include exclusions of coverage for portable devices, insider threats, or intentional acts. Even if you are widely covered for an event, does that extend to all employees? According to the latest Cyber Insurance Buying Guide, “most policies do not adequately provide for both first-party and third-party loss.”

Your ‘Guarantee’ is not a Guarantee

The bottom line for CISOs looking to protect their business is that cyber insurance is not a catch-all solution by any means. Whether it’s insurance companies paying out a limited figure or skirting a pay-out altogether, or cybersecurity companies making big promises that are ultimately undermined by the small print, cyber insurance has a way to go.

Focus on your cybersecurity solution, including strong technology like micro-segmentation to limit the attack surface in the case of a breach. With this in place, you can ensure that your critical assets and data are ring-fenced and isolated, no matter what your infrastructure looks like and what direction the attack comes from. Integration with powerful breach detection and incident response capabilities strengthens your position even further, reducing dwell time, and giving you a security posture you can rely on.

What’s the Difference Between a High Interaction Honeypot and a Low Interaction Honeypot?

A honeypot is a decoy system that is intentionally insecure, used to detect and alert on an attacker’s malicious activity. A smart honeypot solution can divert hackers from your real data center, and also allow you to learn about their behavior in greater detail, without any disruption to your data center or cloud performance.

Honeypots differ in the way that they’re deployed and the sophistication of the decoy. One way to classify the different kinds of honeypots is by their level of involvement, or interaction. Businesses can choose from a low interaction honeypot, a medium interaction honeypot or a high interaction honeypot. Let’s look at the key differences, as well as the pros and cons of each.

Choosing a Low Interaction Honeypot

A low interaction honeypot will only give an attacker very limited access to the operating system. ‘Low interaction’ means exactly that, the adversary will not be able to interact with your decoy system in any depth, as it is a much more static environment. A low interaction honeypot will usually emulate a small amount of internet protocols and network services, just enough to deceive the attacker and no more. In general, most businesses simulate protocols such as TCP and IP, which allows the attacker to think they are connecting to a real system and not a honeypot environment.

A low interaction honeypot is simple to deploy, does not give access to a real root shell, and does not use significant resources to maintain. However, a low interaction honeypot may not be effective enough, as it is only the basic simulation of a machine. It may not fool attackers into engaging, and it’s certainly not in-depth enough to capture complex threats such as zero-day exploits.

Is a High Interaction Honeypot a More Effective Choice?

A high interaction honeypot is the opposite end of the scale in deception technology. Rather than simply emulate certain protocols or services, the attacker is provided with real systems to attack, making it far less likely they will guess they are being diverted or observed. As the systems are only present as a decoy, any traffic that is found is by its very existence malicious, making it easy to spot threats and track and trace an attackers behavior. Using a high interaction honeypot, researchers can learn the tools an attacker uses to escalate privileges, or the lateral movements they make to attempt to uncover sensitive data.

With today’s cutting-edge dynamic deception methods, a high interaction honeypot can adapt to each incident, making it far less likely that the attacker will realize they are engaging with a decoy. If your vendor team or in-house team has a research arm that works behind the scenes to uncover new and emerging cyber threats, this can be a great tool to allow them to learn relevant information about the latest tactics and trends.

Of course, the biggest downside to a high interaction honeypot is the time and effort it takes to build the decoy system at the start, and then to maintain the monitoring of it long-term in order to mitigate risk for your company. For many, a medium interaction honeypot strategy is the best balance, providing less risk than creating a complete physical or virtualized system to divert attackers, but with more functionality. These would still not be suitable for complex threats such as zero day exploits, but could target attackers looking for specific vulnerabilities. For example, a medium interaction honeypot might emulate a Microsoft IIS web server and have sophisticated enough functionality to attract a certain attack that researchers want more information about.

Reducing Risk When Using a High Interaction Honeypot

Using a high interaction honeypot is the best way of using deception technology to fool attackers and get the most information out of an attempted breach. Sophisticated honeypots can simulate multiple hosts or network topologies, include HTTP and FTP servers and virtual IP addresses. The technology can identify returning hackers by marking them with a unique passive fingerprint. You could also use your honeypot solution to separate internal and external deception, keeping you safe from cyber threats that move East-West as well as North-South.

Mitigating the risk of using a high interaction honeypot is easiest when you choose a security solution that uses honeypot technology as one branch of an in-depth solution. Micro-segmentation technology is a powerful way to segment your live environment from your honeypot decoy, ensuring that attackers cannot make lateral moves to sensitive data. With the information you glean from an isolated attacker, you can enforce and strengthen your policy creation to double down on your security overall.

Sweeter than Honey

Understanding the differences between low, medium and high interaction honeypot solutions can help you make the smart choice for your company. While a low interaction honeypot might be simple to deploy and low risk, the real benefits come from using a strong, multi-faceted approach to breach detection and incident response that uses the latest high interaction honeypot technology. For ultimate security, a solution that utilizes micro-segmentation ensures an isolated environment for the honeypot. This lets you rest assured that you aren’t opening yourself up to unnecessary risk while reaping the rewards of a honeypot solution.