
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

The show must go on: Fundamental data plane connectivity services for
dependable SDNs

Michael Borokhovicha, Clement Raultb, Liron Schiffc, Stefan Schmid⁎,d,e

a AT&T Labs - Research, USA
b TU Berlin, Department of Telecommunication Systems, Marchstrasse 23, D - 10587 Berlin, Germany
cGuardiCore Labs, Israel
dUniversity of Vienna, Austria
e Aalborg University, Denmark

A R T I C L E I N F O

Keywords:
Local Fast Failover
Software-Defined Networking (SDN)
OpenFlow
Algorithms
Connectivity

A B S T R A C T

Software-defined network (SDN) architectures raise the question of how to deal with situations where the in-
direction via the control plane is not fast enough or not possible. In order to provide a high availability, con-
nectivity, and robustness, dependable SDNs must support basic functionality also in the data plane. In particular,
SDNs should implement functionality for inband network traversals, e.g., to find failover paths in the presence
link failures. This paper shows that robust inband network traversal schemes for dependable SDNs are feasible,
and presents three fundamentally different mechanisms: simple stateless mechanisms, efficient mechanisms
based on packet tagging, and mechanisms based on dynamic state at the switches. We show how these me-
chanisms can be implemented in today’s SDNs and discuss different applications.

1. Introduction

1.1. Motivation

Software-Defined Network (SDN) architectures distinguish between
the data plane, consisting of the forwarding switches, and the control
plane, consisting of one or multiple software controllers. Out-sourcing
and consolidating the control over the data plane elements to a software
controller simplifies the network management, and introduces new
flexibilities as well as optimization opportunities, for instance, in terms
of traffic engineering [1,2].

However, indirections via the control plane can come at a cost, both
in terms of communication overhead as well as latency. Indeed, the
reaction time to data plane events in the control plane can be orders of
magnitude slower compared to a direct reaction in the network [3]:
especially for the recovery of failures, a slow reaction is problematic.
Worse, the indirection via the control plane may not even be possible: a
controller may be temporarily or permanently unreachable, e.g., due to
a network partition, a computer crash, or even due to a malicious attack
[4].

This is problematic today, as computer networks have become a
critical infrastructure and should provide high availability. Over the
last years, researchers and practitioners have put much effort into the

design of more reliable and available SDN control planes. In these de-
signs, redundant (and possibly also geographically distributed) con-
trollers manage the network in a coordinated fashion [5–9].

Despite these efforts to improve the control plane performance,
redundant controllers alone are not sufficient to ensure the availability
of SDNs. First, the additional latency incurred by the redirection via the
controller may still be too high, even if the controller is nearby.
Moreover, if implemented inband, even with a distributed control
plane, we face a bootstrap problem [10,11]: the communication
channels between switches and controllers must be established and
maintained via the data plane.

Accordingly, we in this paper argue that highly available and reli-
able Software-Defined Networks require basic connectivity services in
the data plane. In particular, the data plane should offer functionality
for inband network traversals or fail-safe routing: the ability to compute
alternative paths after failures (a.k.a. failover). Moreover, it should
support connectivity checks.

1.2. Challenges of inband mechanisms

We are not the first to observe the benefits of inband mechanisms
[12–14]. Indeed, many modern computer networks already include
primitives to support the implementation of local fast failover

https://doi.org/10.1016/j.comcom.2017.12.004
Received 3 December 2016; Received in revised form 15 July 2017; Accepted 11 December 2017

⁎ Corresponding author at: University of Vienna, Währinger Straße 29, 1090 Vienna, Austria.
E-mail address: stefan_schmid@univie.ac.at (S. Schmid).

Computer Communications 116 (2018) 172–183

Available online 13 December 2017
0140-3664/ © 2017 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01403664
https://www.elsevier.com/locate/comcom
https://doi.org/10.1016/j.comcom.2017.12.004
https://doi.org/10.1016/j.comcom.2017.12.004
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.1016/j.comcom.2017.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2017.12.004&domain=pdf

mechanisms: mechanisms to handle the failures in the data plane di-
rectly.

For instance, in datacenters, Equal-Cost Multi-Path (ECMP) routing
is used to automatically failover to another shortest path; in wide-area
networks, networks based on Multiprotocol Label Switching (MPLS) use
Fast Reroute to deal with data plane failures [3]. In the SDN context,
conditional rules whose forwarding behavior depends on the local state
of the switch, have been introduced in recent OpenFlow versions
[12,15]. Future OpenFlow versions are likely to include more func-
tionality or even support maintaining dynamic network state, see for
example the initiatives in the context of P4 [16] and OpenState [17].

However, implementing network traversals or computing failover
paths is challenging, even with the possibility to define OpenFlow local
fast failover rules. Mainly for two reasons:

1) The OpenFlow failover rules must be pre-computed and installed
ahead of time, i.e., without knowledge of the actual failures.

2) Failover rules can only depend on the local state of the switch, i.e.,
the local link failures. A local rerouting decision may not be optimal,
especially in the presence of additional failures occuring in other
parts of the network.

1.3. The case for robust inband traversals

A local fast failover mechanism must essentially be able to perform
a network traversal for failsafe routing: it should find a route from source
to destination, despite failures. Such robust inband network traversals
may also be a useful data plane service, e.g., to check network con-
nectivity.

Ideally, a network traveral provides a maximal robustness, in the
sense that any packet originating at s and destined to d will reach its
destination independently of the location and number of link failures,
as long as s and d belong to the same physically connected component.

Little is known today about the feasibility and efficiency of im-
plementing robust inband network travesals in software-defined net-
works, the topic addressed in this paper. In particular, robust routing
algorithms known from other types of networks such as MPLS, are
sometimes impossible to implement without additional functionality at
the switch, or inefficient (e.g., require large packet headers), and hence
do not scale to large networks.

1.4. Our contributions

This paper studies the feasibility and efficiency of inband network
traversals, a fundamental building block for more advanced data plane
services of dependable SDNs, such as robust routing and connectivity
testing.

We present a comprehensive approach, exploring conceptually dif-
ferent solutions which provide different tradeoffs in terms of overhead
and performance:

1) Stateless mechanisms: We show that it is feasible to implement simple
yet very robust data plane traversals using today’s OpenFlow pro-
tocol. In particular, we present a simple stateless scheme which is
maximally robust: a route from source to destination is found,
whenever this is possible. The disadvantage of this scheme are the
potentially high and unpredictable route lengths.

2) Tagging mechanisms: We present more efficient robust traversals in a
more advanced network model, using packet tagging, as it is also
supported in OpenFlow. Our OpenFlow model and approach may be
of independent interest, as it introduces an interesting new graph
exploration problem.

3) Stateful mechanisms: Given the benefits of maintaining state in the
packets, we further explore means to introduce state in an OpenFlow
network. We show that, maybe suprisingly, using packet tagging is
not the only way state can be introduced in OpenFlow traversals. In

fact, it is possible to implement simple state machines on the
switches, using the standard OpenFlow protocol, and we will refer to
the corresponding state as inband registers. Moreover, we present an
interesting and novel mechanism to store state in the hosts attached
to the network, in a completely transparent manner, using MAC
addresses to encode paths.

Finally, we discuss applications for a robust inband network tra-
versal, including robust routing and efficient connectivity checks.

1.5. Organization

The remainder of this paper is organized as follows. Section 2 in-
troduces the necessary background on SDN and OpenFlow. In Section 3,
we present and discuss different robust traversal algorithms, using
packet tagging, and in Section 5 we show how to introduce state in
switches and hosts. In Section 6, we discuss applications. After re-
viewing related work in Section 7, we conclude with a discussion in
Section 8.

2. Background and model

2.1. SDN and OpenFlow

Our work is motivated by the Software-Defined Networking para-
digm, and especially OpenFlow, the predominant SDN protocol today.
This section provides the necessary background on OpenFlow (focusing
on the commonly used version 1.3). OpenFlow is based on a match-
action concept: OpenFlow switches store rules (installed by the con-
troller) consisting of a match and an action part. For example, an action
can define a port to which the matched packet should be forwarded or
change a header field (e.g., add or change a tag).

A new flow entry can either be installed proactively or reactively. In
the reactive case, when a packet of a flow arrives at a switch and there
is no matching rule, the table miss entry will be used. By default, upon a
table miss, a packet is forwarded to the controller. Given such a packet-
in event, the controller will create a new rule and push the new flow
entry to this switch. The switch will then apply this rule to the packet.
In the proactive case, flow entries are pushed to the switches ahead of
time.

Each OpenFlow switch stores one or multiple flow tables, each of
which contains a set of rules (a.k.a. flow entries). Flow tables form a
pipeline, and flow entries are ordered according to priorities: A packet
arriving at a switch is first checked by the rule of the highest priority in
table 0: the fields of the data packet are compared with the match fields
of that rule, and if they fit, some instructions (the actions) are executed;
subsequently, lower priority rules are checked. Depending on the out-
come of the table 0 processing, the packet may be sent to additional
flow tables in the pipeline. Concretely, instructions can be used to de-
fine additional tables to be visited (goto instruction), to modify the set of
to-be-applied actions (either by appending, deleting, or modifying ac-
tions), or immediately apply some actions to the packet. A meta-data
field can be used to exchange information between tables. Part of the
header can be inserted or removed from a packet via pushing and
popping of labels and tags, e.g., of MPLS and Virtual Local Area
Network (VLAN) fields.

In general, a packet can be matched against any of its header fields,
and fields can be wildcarded and sometimes bitmasked (e.g., the meta-
data field is maskable). If no rule matches, the packet is dropped. The
use of multiple flow tables (compared to a single one) can simplify
management and also improve performance.

Our robust traversal algorithms make use of Group Tables, and
especially the Fast Failover (FF) concept introduced in OpenFlow 1.3.
The group table consists of group entries, and each group entry contains
one or more action buckets. For the group entries of the fast failover
type, each bucket is associated with a specific port (or group), and only

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

173

the buckets associated with a live port (or group) can be used. As we
will see, we can exploit this mechanism to control the forwarding be-
havior of the switch, depending on the liveness of ports. Another im-
portant group type for us are select groups: the select group provides the
possibility to link an action bucket to a port (or a group), and define
different selection types (e.g., round-robin or all).

2.2. Model

Robust inband network traversals are a fundamental building block
and useful data plane network service for dependable SDNs. In this
paper, we explore the feasibility and efficiency of implementing very
robust inband network traversals: We say that a traversal mechanism is
maximally robust if it tolerates an arbitrary number of link failures: a
route between source and destination is always found, whenever this is
possible, i.e., as long as the underlying network is connected.

In order to implement robust traversals in OpenFlow, we make a
smart use of the OpenFlow local fast failover mechanism. Computing
such local failover tables for robust traversals however is non-trivial, as
the forwarding rules need to be allocated before failure(s) happen, and
as the rules can depend on local liveness information only.

We will sometimes refer to the initial network (before the failures
occur) by G0, and to the remaining “sub-graph” after the failures by G1.
The problem of how to implement robust traversals and compute fail-
over tables for G0 without knowing the actual failure scenario, i.e., G1, is
an algorithmic one.

As we will show in this paper, it is possible to implement maximally
robust traversals in today’s OpenFlow protocol. However, different
techniques come with different tradeoffs, in terms of route length (how
long is the longest forwarding path in G1, in terms of hops?), rule and
table complexity (how many additional tables and rules per node are
required to implement the robust traversal mechanism?) or tag com-
plexity (how much header space is required for tagging?).

In the following, n will denote the total number of network switches
(the same in G0 and G1), E will denote the set of links (total number:

=m E), and Δ will refer to the maximal node degree in G0. We will use
subscripts, e.g., Δi, to denote the corresponding value for the given node
vi, and assume that node’s ports are indexed from 1 to Δi.

3. Stateless robust inband network traversal

We start by observing that a simple yet robust network traversal can
be implemented in OpenFlow, using (pseudo-) random walks. Random
walks are attractive as they do not require to store or maintain in-
formation about the current network configuration, neither at the
switches, nor in the packets.

The main advantage of our scheme, henceforth called RWalk, is that
it can provide an alternative path for any link failure (as long as the
remaining graph is connected). We can implement RWalk in standard
OpenFlow using fast failover and select group type features. We set the
bucket selection method to random. Similarly to the fast failover type
FF, the select group type provides the possibility to link an action
bucket to a port (or a group), and the bucket can be selected only if this
port is live. When the packet that triggered the traversal arrives at a
switch, the switch applies Gr 1 to it from the group table (cf. Table 1).
In this group entry (of the select type) the switch will randomly select a
bucket linked to a live switch port. Hence, at each switch the traversal

packet is forwarded to a random live port.
Note that only one group table entry is needed to implement the

traversal mechanism. This is important as switch memory is a critical
resource. However, the route lengths are relatively high and subject to a
high variance, see the qualitative results in Fig. 1: the plot is based on a
small IGEN topology (delaunay triangulated), consisting of 20 switches
and hosts connected to them, each link having a delay of 2 ms. Using
pings, 100 packets each time, we analyze the RTT between two hosts
connected at both ends of the network, before and after the failure (one
link is broken along the default path between the hosts) occurs. Before
the failure, the shortest path is used between the hosts (and it consists
of 5 hops).

This variance motivates the more deterministic failover schemes
developed in this paper.

4. Predictable traversals with tagging

While attractive for its simplicity and robustness, the random net-
work traversal scheme presented in the previous section can result in
long and unpredictable traversal paths. Worse, different packets from
the same microflow may take different paths, potentially introducing
many packet reorderings, which can negatively affect the Transmission
Control Protocol’s (TCP’s) throughput. In the following, we show that
more efficient traversals can be implemented by storing network tra-
versal information in packet tags.

In the following, we first present a simple Depth-First Search (DFS)-
like traversal scheme called −ineff DFS. While it is deterministic, the
disadvantage of −ineff DFS is that it requires much header space
(linear in n, the network size). We will later present a more header-
space efficient algorithm, −eff DFS, requiring as little asO(D · log n)
space, where D is the diameter of the network: D is typically small.

The −ineff DFS algorithm traverses the network in a depth-first
fashion, implicitly constructing a spanning tree. Towards this goal, for
each node vi, a certain part of the packet header pkt.vi.par is reserved to
store the parent p(vi) of vi: the node from which the packet was received
for the first time (indicated by the incoming port in). There is also a
reserved place to store the pkt.vi.cur variable which represents the
output port of the switch being currently traversed by the algorithm
(Fig. 2).

The INEFF-DFS algorithm is summarized in Algorithm 1 in pseudo-
code. Here, =pkt start. 0 denotes that the traversal was not started yet.
(Depending on the use case, see later, traversals can be started explicitly
upon request, or are triggered for an existing packet hitting a failed
link.) For example, a switch can be programmed to match a specific
“codeword” in a packet and then initiate the traversal. Alternatively, a
switch can use regular routing rules until a failure of the outgoing port
is detected, which will trigger the traversal.

Upon reception of a traversal-triggering packet, a node starts the

Table 1
Random walker: Group table for switch i.

Group table

Gr ID Gr type Action buckets

Gr 1 SELECT
=

Fwd j j i1.Δ

Fig. 1. Number of hops taken by packets using the random walk failover scheme, after the
failure took place.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

174

algorithm by setting pkt.start to 1 and trying to send the packet (i.e.,
initiate the traversal) from the next live port, beginning with port 1. A
node tries to forward the packet to each neighbor, and only when all the
neighbors (connected to live ports) were traversed, the node returns the
packet to its parent.

The implementation of the −ineff DFS includes three flow tables
and a group table (see Table 2). Table A checks whether the traversal
has already started and if not, starts it. All groups in the group table are
of type Fast-Failover, which means that each action bucket is coupled to
a port (forwarding port in our case), and the first bucket with a working
port is applied to the packet.

Each of the groups Gr cur.par, ∈ …cur [1, ,Δ],i ∈ … −par [0, ,Δ 1],i
tries to find the next working port: it starts from port cur, skips the
parent port par, and forwards back to the parent par only if all the
previous ports have failed. Notice that the case when =pkt v par. . Δi i is
handled using the group Gr cur.0.

Once a packet was forwarded by the group Gr 1.0, its pkt.start bit
will be set to 1, thus, when it is received by the next switch, it is passed
to Table B; Table B will apply the corresponding group according to the
pkt.vi.cur and pkt.vi.par fields. If pkt.vi.cur is 0, Table B will save the
input port to the pkt.vi.par field. When all the neighbors are traversed,
the packet is returned to the parent using Table C. The detailed
OpenFlow tables for this algorithm appear in Table 2.

Notice that the traversal algorithm does not include the triggering
mechanism since it depends on the specific application. For example, in
the failover application, a switch can use an additional Group Table
entry that will first try the default route for the given destination and if
that port is failed, the next bucket in this entry will send the packet to
the Gr 0.0 entry that actually starts the traversal algorithm. Another
application may request a network traversal (e.g., for some data/sta-
tistics collection or connectivity check) by sending a packet with a
specific predefined “codeword”. Once the switch matches this code-
word it can initiate the traversal by sending the packet to Table A (i.e.,
if match(codeword) then goto Table A).

4.1. More efficient traversals with tagging

Given this basic scheme, we now present a more efficient traversal.
We propose a distributed, DFS-like traversal in which a packet is al-
lowed to perform DFS up to a maximum depth maxdist. Assuming
maxdist is at least the diameter of the network (i.e., in G1, after the
failures had occurred), such a traversal is guaranteed to traverse all the

nodes.
The pseudocode of our algorithm is shown in Algorithm 2. The

packet header includes the tag T consisting of maxdist many cells, as
well as the global parameters: pkt.start and pkt.dist. Each cell of the tag T
consists of three fields: T[·].ID, the ID of a node which is currently
using this cell, T[·].par, the port connected the node’s parent in the
traversal, and T[·].cur, the port connected to the node’s successor
which is currently being traversed. Note that only maxdist cells need to
be allocated in this scheme.

The pkt.start field indicates whether the traversal procedure has
started. It is set by the node which first received the packet triggering
the traversal. This node is called the root of the traversal. The pkt.dist
field keeps track of how far from the traversal’s root the packet is lo-
cated.

When a switch vi receives a packet, it first inspects the pkt.start field
to check whether the traversal has started, and if not, starts it: First, the
switch initializes the global parameters pkt.start and pkt.dist. Then it
indicates that it will use the first cell in the tag T, sets its port to the
parent to 0 (the root has no parent), and sets T[pkt.dist].cur and the
output port to 1 (i.e., traversing successors starting with port 1).

Then we check whether the output port set by the switch is working
or whether it is connected to its parent. In both cases the switch will try
the next port (while loop on Line 25). If all potential ports (from out to
Δi, the last port of switch vi) have been tried, the switch has finished
traversing all its successors, and the packet is returned to the parent.
Before returning the packet to the parent, the switch removes itself
from the tag T, by setting the T[pkt.dist].ID field to 0, and decrementing
the current path length by 1 (Lines 32,33). When a packet is sent to the
next successor, the distance from the root increases (Line 35).

If a switch receives a packet which is already performing the tra-
versal (i.e., pkt.start is 1), it checks whether the packet’s distance from
the root reached its maximum or whether the switch’s ID is already
present in T somewhere before the last cell T[pkt.dist] (see Line 9). The
first part of the condition implies that the packet had reached its
maximum permitted distance from the root, and the second part implies
that the switch is already in the current traversal path, but not at the
last position. In both cases the packet is returned back to the port from
which it has been received.

Next, a switch checks whether it received this packet for the first
time, in which case it initializes the T[pkt.dist] cell and uses its fields to
save the port which is connected to the switch’s parent (Line 13). Then,
on Lines 16 and 17, the switch sets the output port to the next successor
it needs to traverse, and saves this port in the T[pkt.dist].cur field. In
case the next port is larger than Δi, this implies that all the successors
were traversed, and the packet is sent to the parent (Lines 19–24).
Notice that when the root needs to return the packet to its parent
(which does not exist), this implies that the traversal is finished and the
packet should be dropped (Lines 21 and 31).

Implementing the −eff DFS traversal in OpenFlow is non-trivial.
Overall, there are five flow tables and a group table. In order to make
the group table representation more compact, we use the following
notation to indicate a sequence of k action buckets: = …action j() j j j j, , , k1 2 .
That is, in each bucket in the sequence, j is replaced by the next number
in the sequence …j j j, , , k1 1 . The group IDs have the form cur.par where
cur is the value of T[pkt.dist].cur in the packet, i.e., the port which is
currently traversed, and par is the value of T[pkt.dist].par. The detailed
OpenFlow tables for this algorithm appear in Table 3.

Table A checks whether the traversal procedure has already started
and if not, starts it by invoking group Gr 0.0 from the group table. Gr
0.0 initializes the required fields in the packet and invokes Gr 1.0 (i.e.,
chains it), which in turn will try to forward the packet to the next
working port, starting from port 1. Tables B and C implement the
condition on Line 9 in Algorithm 2. Table E implements Lines 19–24,
i.e., sends the packet to its parent. Lines 29–33 are used to send the
message to the parent, using the group tables in groups + parΔ 1.i : in
this case, the port(s) preceding the parent port failed.

Fig. 2. Flowchart for the −ineff DFS algorithm. When a packet received by a switch, it
decides whether to apply the −ineff DFS algorithm to it. The algorithm may be applied,
for example, under one of the three conditions in the upper block. The start means
pkt.start bit, in means the input port through which the packet was received, the cur[i]
means pkt.vi.cur and par[i] is the pkt.vi.par field.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

175

In
pu

t:
cu

rr
en

tn
od

e:
v i

,i
np

ut
po

rt
:i

n,
tr

av
er

sa
lg

lo
ba

lp
ar

am
et

er
in

pa
ck

et
:

pk
t.

st
ar

t,
pa

ck
et

ta
g

ar
ra

y:
{pk

t.v
j} j∈

[n
]

O
ut

pu
t:

ou
tp

ut
po

rt
:o

ut
1:

if
pk

t.
st

ar
t
=

0
th

en
2:

pk
t.

st
ar

t
←

1
3:

ou
t
←

1
4:

el
se

5:
if

pk
t.v

i.
cu

r
=

0
th

en
6:

pk
t.v

i.
pa

r
←

in
7:

el
se

if
pk

t.v
i.
cu

r
�

in
th

en
8:

ou
t
←

in
9:

go
to

20
10

:
ou

t
←

pk
t.v

i.
cu

r
+

1
11

:
if

ou
t
=
Δ

i
+

1
th

en
12

:
ou

t
←

pk
t.v

i.
pa

r
13

:
go

to
20

14
:

w
hi

le
ou

tf
ai

le
d

or
ou

t
=

pk
t.v

i.
pa

r
do

15
:

ou
t
←

ou
t+

1
16

:
if

ou
t
=
Δ

i
+

1
th

en
17

:
ou

t
←

pk
t.v

i.
pa

r
18

:
go

to
20

19
:

pk
t.v

i.
cu

r
←

ou
t

20
:

re
tu

rn
ou

t

A
lg
or

it
hm

1.
A
lg
or
it
hm

IN
EF

F-
D
FS
.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

176

Each of the groups Gr cur.par, ∈ …cur [1, ,Δ],i ∈ … −par [0, ,Δ 1],i
tries to find the next working port: it starts from the port cur and skips
the parent port par. If all the ports have failed, the additional bucket Gr

+ parΔ 1.i will forward the packet back to the parent par. Notice that
in the case the parent is 0, there are no additional buckets: the root of
the traversal does not have a parent.

4.2. Alternative: Iterative Depth-DFS

It is easy to extend our approach to header-space efficient “breadth-
first” traversals, or more specifically: Iterative Depth-DFS (IDDFS) tra-
versals. The basic idea is to increase maxdist one-by-one. We start the
DFS algorithm with =maxdist 1: only the 1-hop neighborhood of the
traversal root will be explored. Once the packet returned back to the
root, instead of discarding it (the default behavior of our DFS scheme),
the root will increment maxdist and restart the DFS traversal. This time
the 2-hops neighborhood of the root will be traversed. In the same
manner, we continue to increase maxdist up to the diameter of the
network G1 (the resulting network after the failures). Eventually, the
whole network will be traversed while the nodes are discovered in the
BFS-like order.

5. Short routes with state

We have shown that the possibility to store state in the packet
headers, using tagging, can be useful to overcome some of the down-
sides of the random walk scheme. In this section, we further explore the
possibility of leveraging state information for the traversals. In parti-
cular, we show that, maybe suprisingly, using packet tagging is not the
only way state can be introduced in OpenFlow traversals. In fact, it is
possible to implement simple state machines on the switches, using the
standard OpenFlow protocol, and we will refer to the corresponding
state as inband registers. Moreover, we present an interesting and novel
mechanism to store state in the hosts attached to the network, in a
completely transparent manner, using MAC addresses to encode paths.
We will refer to this state as host-based registers. For example, such state
can be exploited to store shortest paths, which have recently been

discovered during network traversals.

5.1. In-band registers

Our OpenFlow in-band register implements multiple (small) coun-
ters which are stored in the switch and support fetch-and-increment
operations while processing different packets. In the following, we will
use the terms register and counter interchangeably. The in-band reg-
ister can be read and updated while packets are processed in the
OpenFlow pipeline. In-band registers can be implemented using a group
table with log2k groups of the round-robin bucket selection policy (an
optional feature of OpenFlow 1.3), and each group contains 2 action
buckets (see Table 4). Each group represents a bit of the counter, i.e.,
for a counter that counts from 0 to −k 1 we need log2k bits (groups).
Fetching a counter is done by applying all the log k groups Gr x, and the
value of the counter will be written to the packet’s tag pkt.cnt.x
(∈ …x k[1, , log]).

In order to preserve the value of the counter after the fetch, the
following steps need to be implemented. After fetching the counter, all
its bits will be flipped (due to the round-robin type of the groups), thus,
we need now to flip them one more time in order return the counter to
its original value. This can be done by applying all the groups Gr x
(∈ …x k[1, , log]) once again.

Let us now describe how to set a new value to the in-band register.
Assume that the fetched counter’s value is stored bitwise in the packet’s
fields pkt.cnt.x and the desired counter’s value is stored in the metadata
new.x, where ∈ …x k[1, , log]. Now we create a table that matches all
possible combinations of pkt.cnt.x and new.x (this will require k2 en-
tries). The action will consist of applying groups Gr y where

∈ =y i pkt cnt i new i{ . . . }. The latter is true since the first fetch already
flipped the value of the bit y and thus we need another flip to make the
counter’s bit y be equal to new.y.

This implementation uses 2log k bits for matching in the flow tables
(flow tables are used to preserve or set counter values), and requires up
to log k actions per entry.

Note that the register implementation (fetching and setting) re-
quires to access the group table twice, interleavingly with flow tables;

Table 2
−ineff DFS : Flow and group tables of switch i.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

177

In
pu

t:
cu

rr
en

tn
od

e:
v i

,i
np

ut
po

rt
:i

n,
tr

av
er

sa
lg

lo
ba

lp
ar

am
et

er
s

in
pa

ck
et

:(
pk

t.
st

ar
t,

pk
t.d

is
t)

,p
re

al
lo

ca
te

d
pa

ck
et

ta
g

ar
ra

y
of

le
ng

th
m

ax
di

st
:T

O
ut

pu
t:

ou
tp

ut
po

rt
:o

ut
1:

if
pk

t.
st

ar
t
=

0
th

en
2:

pk
t.

st
ar

t
←

1
3:

pk
t.d

is
t
←

0
4:

T
[p

kt
.d

is
t]
.I

D
←

i
5:

T
[p

kt
.d

is
t]
.p

ar
←

0
6:

T
[p

kt
.d

is
t]
.c

ur
←

1
7:

ou
t
←

1
8:

el
se

9:
if

pk
t.d

is
t
=

m
ax

di
st

or
∃k
<

pk
t.d

is
tf

or
w

hi
ch

T
[k

].
ID
=

it
he

n
10

:
pk

t.d
is

t
←

pk
t.d

is
t−

1
11

:
ou

t
←

in
12

:
re

tu
rn

ou
t

13
:

if
T

[p
kt
.d

is
t]
.c

ur
=

0
th

en
14

:
T

[p
kt
.d

is
t]
.p

ar
←

in
15

:
T

[p
kt
.d

is
t]
.I

D
←

i
16

:
ou

t
←

T
[p

kt
.d

is
t]
.c

ur
+

1
17

:
T

[p
kt
.d

is
t]
.c

ur
←

ou
t

18
:

if
ou

t
=
Δ

i
+

1
th

en
19

:
ou

t
←

T
[d

is
t]
.p

ar
20

:
if

ou
t
=

0
th

en
21

:
D

ro
p

pa
ck

et
an

d
ex

it
22

:
T

[p
kt
.d

is
t]
.c

ur
←

0
23

:
pk

t.d
is

t
←

pk
t.d

is
t−

1
24

:
re

tu
rn

ou
t

25
:

w
hi

le
ou

tf
ai

le
d

or
ou

t
=

T
[p

kt
.d

is
t]
.p

ar
do

26
:

ou
t
←

ou
t+

1
27

:
T

[p
kt
.d

is
t]
.c

ur
←

ou
t

28
:

if
ou

t
=
Δ

i
+

1
th

en
29

:
ou

t
←

T
[p

kt
.d

is
t]
.p

ar
30

:
if

ou
t
=

0
th

en
31

:
D

ro
p

pa
ck

et
an

d
ex

it
32

:
T

[p
kt
.d

is
t]
.c

ur
←

0
33

:
pk

t.d
is

t
←

pk
t.d

is
t−

1
34

:
re

tu
rn

ou
t

35
:

pk
t.d

is
t
←

pk
t.d

is
t+

1
36

:
re

tu
rn

ou
t

A
lg
or

it
hm

2.
A
lg
or
it
hm

−
ef

f
D

FS
.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

178

however common OpenFlow switches support group table access only
at the end of the flow tables pipeline. We can overcome this limitation
by making each packet to be processed twice in the switch. This can be
implemented by physically interconnecting two of the switch ports (i.e.,
creating a physical loopback), or by asking a neighboring switch to

return the packet back if a certain bit in the packet is set. Moreover, we
expect that future OpenFlow switches would support more flexible
group table accesses and more field actions.

Table 3
−eff DFS : Flow and Group tables of switch i.

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

179

5.2. Host-based registers

We next present an interesting alternative scheme to store state in
the network: host-based registers. Host-based registers leverage the
hosts’ ARP caches to store per-destination information (e.g., efficient
routing paths learned during a traversal), encoded in terms of MAC
addresses. The solution is completely transparent to the hosts (and IP
layer).

The registers are written by sending the host a (gratuitous) ARP
reply message with specific (destination) host as source-IP and the
register value as source-MAC (src_mac). Reading the registers is auto-
matically performed for every transmitted packet, as the register value
is set as destination-MAC (dst_mac), and can be used by the OpenFlow
switches.

Next, we describe how these registers can be used to store and
follow paths. First we show how short paths can be aggregated and
packed into an ARP reply message. Later we show how a path encoded
in the dst_macfield can be followed. For simplicity, we assume paths of
maximum length 12 for 16-port nodes, representable with 48 bits.

5.2.1. Aggregating paths for host-based registers
In order to aggregate a path for host-based registers, every node

along the path appends the in-port to the current path array, thereby
allowing backward replay of the path. As described in Table 5, the
appending operation is performed according to the current hop number
stored as VLAN tag: it includes copying the src_macto a metadata field
(using the OpenFlow 1.5 copy field action), setting the 4 bits at offset

hopnumber to the 4 bits encoding of the in-port, and copying the me-
tadata back to src_mac.

5.2.2. Following paths stored in host-based registers
When a host sends a packet to some destination host (represented by

its IP), the packet holds the path as the dst_mac. In order to follow the
path, each node along the path extracts the current port and forwards to
this port. As described in Table 6, the extraction of each hop is per-
formed backward (reversed to the aggregation order), and the VLAN tag
is used to indicate the current offset in the dst_macto consider as next
hop port.

6. Applications

Our traversal schemes come with interesting applications. In the
following, we present a robust routing application and a connectivity
testing application. We discuss different implementation variants, based
on packet tagging as well as based on the registers introduced in the
previous section.

6.1. Failover routing

In legacy networks, distributed protocols such as the Layer-2
Spanning Tree Protocol (STP) are used to update the configuration of
each network element (switch/router) in response to network changes,
for example link failures. Typically, a link failure is noticed by an in-
cident network element, which then propagates the information to
neighbors, etc. As such, these protocols ensure that hosts stay con-
nected, as long as the physical network is connected.

In SDNs, events are dispatched to a logically centralized controller,
which seeks to maintain a global view of the network, and pushes new
forwarding rules to all switches, in response to network changes. In
addition, SDN switches can be configured with inband failover rules
which react to local failures (without controller intervention).

In the following, we discuss how to use traversals to implement
robust routing in the presence of (possibly many and simultaneous)
failures. The inband approach is relevant as it can also operate in cases
where the control plane is unavailable. While our failover scheme could
in principle be applied to the entire traffic, in practice, it can make sense
to reroute only the flows of some critical applications. Indeed, the
traffic engineering flexibilities of OpenFlow and the possibility to match
not only Layer-2 but also Layer-3 and Layer-4 header fields, as well as
the possibility to tag packets at ingress ports (e.g., using an intrusion
detection system), allows for a fine-grained failover, where uncritical

Table 4
In-band register: Group Table that implements an in-band register which counts from 0 to

−k 1.

Gr id Type Action buckets

1 RR ⟨pkt.cnt.1← 0⟩, ⟨pkt.cnt.1← 1⟩
2 RR ⟨pkt.cnt.2← 0⟩, ⟨pkt.cnt.2← 1⟩
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
log k RR ⟨pkt.cnt.log k← 0⟩, ⟨pkt.cnt.log k← 1⟩

Table 5
Aggregating paths for host-based registers. VLAN tag indicates the hop number and
thereby the offset to append the in-port inside the src_mac. Writing to metadat[i] is ac-
tually setting the four bits at offset 4i, Assuming a 4bit representation of in-port.

Match Instructions

pkt.vlan in

0 1 ←metadata pkt srcmac. , metadata[0]← 1,
←pkt srcmac metadata. , pkt.vlan← 1

1 1 ←metadata pkt srcmac. , metadata[1]← 1,
←pkt srcmac metadata. , pkt.vlan← 2

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
D 1 ←metadata pkt srcmac. , metadata[D]← 1,

←pkt srcmac metadata. , ← +pkt vlan D. 1
0 2 ←metadata pkt srcmac. , metadata[0]← 1,

←pkt srcmac metadata. , pkt.vlan← 1
1 2 ←metadata pkt srcmac. , metadata[1]← 1,

←pkt srcmac metadata. , pkt.vlan← 2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
D 2 ←metadata pkt srcmac. , metadata[D]← 1,

←pkt srcmac metadata. , ← +pkt vlan D. 1
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
0 Δi ←metadata pkt srcmac. , metadata[0]← 1,

←pkt srcmac metadata. , pkt.vlan← 1
1 Δi ←metadata pkt srcmac. , metadata[1]← 1,

←pkt srcmac metadata. , pkt.vlan← 2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
D Δi ←metadata pkt srcmac. , metadata[D]← 1,

←pkt srcmac metadata. , ← +pkt vlan D. 1

Table 6
Following paths stored in host-based registers. VLAN tag indicates the hop number and
thereby the offset to match inside the dst_macwhich indicates the output port.

Match Instructions

pkt.vlan pkt dstmac.

0 *44 · 1 pkt.vlan← 1, forward 1
1 *40 · 1 · *4 pkt.vlan← 2, forward 1
2 *36 · 1 · *8 pkt.vlan← 3, forward 1
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

−D 1 1 · *44 pkt.vlan← 0, forward 1
0 *44 · 2 pkt.vlan← 1, forward 2
1 *40 · 2 · *4 pkt.vlan← 2, forward 2
2 *36 · 2 · *8 pkt.vlan← 3, forward 2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

−D 1 2 · *44 pkt.vlan← 0, forward 2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
0 *44 · Δi pkt.vlan← 1, forward Δi

1 *40 · Δi · *4 pkt.vlan← 2, forward Δi

2 *36 · Δi · *8 pkt.vlan← 3, forward Δi

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
−D 1 Δi · *44 pkt.vlan← 0, forward Δi

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

180

flows or very heavy flows are dropped when links fail, while critical and
light flows are rerouted. For example, it can make sense to prioritize
(and reroute) only flows containing control messages, or flows pro-
viding connectivity between the switch and any controller. Time un-
critical and/or large flows such as flows for Dropbox synchronization,
do not necessarily have to be rerouted inband.

6.1.1. Using plain traversals
Given our inband traversals, it is straight-forward to implement

failover routing applications: whenever a packet encounters a failed
link along its path, it is diverted to an alternative link (according to
Random Walk, DFS and BFS), eventually reaching the destination.
While a random walk approach is simple and does not require any re-
sources of the packet, the DFS and BFS schemes require some header
space but also result in shorter and deterministic route lengths.

6.1.2. Improved version: Spanning trees with inband registers
With the concept of inband registers, we can construct a spanning

tree. Within a spanning tree, simple forwarding rules can help any
packet to traverse the network without using additional (packet) space.
The main idea is to use inband registers to save the in-port to out-port
mapping according to the one DFS traversal while performing a single
DFS traversal. Then any packet can follow this mapping and perform a
DFS traversal without storing any state in the packet.

6.1.3. Shortest paths with inband and host registers
Using inband registers, we can also implement inband shortest path

routing. This routing can be established upon request, or triggered by
an event (such as a path failure), and once computed, it can assist every
packet. The main idea is to use an inband register to save the parent
port ID which emerges during a network traversal, using the IDDFS
traversal algorithm. Each traversal initiated from some root node i will
store the parent port IDs in every node. These parent ports are later
used to route packets for destination i. To support routing to every
node, we will initiate a traversal from each node, keeping unique parent
IDs per destination, in every node. Following the parent ports of a
traversal, we will route a packet along the path to the root. Since the
resulting paths were created by the IDDFS traversal algorithm, they are
the shortest paths.

We can achieve a similar result also by using per-destination host
registers. When detecting a shortest path with IDDFS traversal, we can
maintain the current path to the root in the packet and store it in the
registers of the hosts attached to the current node (where the destina-
tion is the root), rather than in the node’s inband registers. Later, when
one of the hosts tries to reach that root, the host register value is read
and attached to the packets; hence, the switches can route accordingly.

In Table 7, we compare the performance of the above failover
schemes. We can see the tradeoff between the maximum number of
hops and the amount of the state used. While the Random Walk ap-
proach uses no state, the traversal paths can be very long. We can also
see the benefit of the −eff DFS over the −ineff DFS in terms of a packet
header space used. The Spanning Tree and the Shortest Paths

approaches do not require any packet header space once the in-band
registered were initialized. For example, in a small Clos datacenter
[18], we may have =Δ 48 port switches. Thus, in our implementation
of RWalk, we will have one group table with one entry. −ineff DFS
requires three flow tables, one with two entries, one with =Δ 48 entries
and one with one with Δ2 entries, as well as one gorup table with Δ2

entries. −eff DFS requires five flow tables, two with two entries, two
with Δ entries, and one with Δ2 entries; moreover, we need a group
table with Δ2 entries.

6.2. Connectivity queries

A query mechanism to check the connectivity status between hosts
is crucial for dependable networked systems, e.g., for emergency or
disaster handling, but for example also in the context of distributed SDN
control applications in datacenters [19].

6.2.1. One time queries
Our traversal algorithms (Random Walk, DFS, BFS) not only provide

a guaranteed message delivery as long as the underlying network is
physically connected, but they can also be used to indicate dis-
connectivity. A one time connectivity query can be implemented in the
following way: A traversal is used to search the destination, up to a
certain hop limit. If the destination is reached, another traversal is used
to inform the source. If the hop limit is reached before reaching the
destination, a second traversal is issued to inform the source.
Depending on the traversal technique, it may be possible to keep the
path information during the first traversal, such that the response can
be sent backward, without the need for a second traversal.

By using per-destination host registers, we can make the reply to a
query follow the detected path (in case it is short enough), or at least to
assist its traversal, without any modification to the queried host.

6.2.2. Connectivity service
Traversals can be also used to implement connectivity service for

hosts [19], in the following way. Each host, upon request or by con-
figuration, actively initiates new traversals, multicasting its liveness
status. All interested subscribers can be informed, in a publish/sub-
scribe manner, using rules on their attached OpenFlow switch. Tra-
versals are numbered using increasing IDs, to avoid multiple visits of
the same traversal (e.g., in case of network loops or the random walk
based traversal).

Similar to failover routing, inband registers can vastly improve the
performance of the queries. For example, in the connectivity service,
each switch, before it forwards the current traversal to the subscribers,
can verify whether the current traversal uses a larger ID than the pre-
vious one. By performing the connectivity test from all switches,
switches keep track of the last traversal IDs of each other, speeding up
one time queries further: it is then sufficient to check the attached
switch for a change in the relevant traversal IDs.

Note that allowing ICMP ping packets to be sent using traversals, we
turn them into (one time) physical network queries. Compared to a
distributed application based on ICMP probing, requiring n2 packets,
our service uses a linear number of packets only.

7. Related work

While the benefits of more centralized network architectures en-
abled by protocols like OpenFlow [20] and segment routing [21] have
attracting much interest from both researchers and operators, the
question of which functionality can and should remain in the data plane
is subject to ongoing discussions.

There exist several empirical studies showing that link failures, even
simultaneous ones, do occur in different networks [22,23], including
wide-area [24] and datacenter networks [25]. For example, it has been
reported that in a wide area network, a link fails every 30 minutes on

Table 7
Comparison between the failover routing methods. The number of nodes is denoted by n,
the number of links by m, the degree by Δ and the diameter by D. We compare the
maximum number of hops a packet will travel until the destination will be reached; size of
the header space used in the packet; per-switch space used by the in-band registers.

Technique #hops Packet space Per switch space

Random walk O(n3) 0 0
−ineff DFS O(m) O(nlog Δ) 0

−eff DFS O(m) O(Dlog n) 0
−eff IDDFS O(Dm) O(Dlog n) 0

Spanning tree O(n) 0 Δ2log Δ
Shortest paths O(D) 0 nlog n

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

181

average [26].
Commercial networks today usually rely on routing schemes such as

OSPF, IS-IS, and MPLS reroute traffic, which however do not come with
formal guarantees under multiple failures. Accordingly, backbone net-
works are usually largely over-provisioned.

Moreover, it is well-known that reactions to even a single link
failure can be slow in traditional networks based on a distributed
control plane: in the order of tens of milliseconds or even seconds,
depending on the network; much higher than packet forwarding in-
tervals (in the order of μsec in Gbps networks) [27].

More systematically, existing robust routing mechanisms can be
classified according to whether a single link/node failure [28–30] or
multiple ones can be tolerated [31]. Alternatively, they can be classified
into static and dynamic ones. Dynamic tables and using link reversals
[3,32,33] can yield very robust networks, but require dynamic tables.
Finally, one can also classify existing mechanisms as basic routing
schemes [34,35], schemes exploiting packet-header rewriting [36,37],
and (randomized) routing with packet-duplication [38]. While packet-
header rewriting can improve resiliency, it can be problematic in
practice, especially under multiple failures, as header space (and rule
space) is limited.

The works closest to ours are by Feigenbaum [27], Chiesa et al.
[38,39], Stephens et al. [37,40], and Borokhovich and Schmid [41].
Feigenbaum [27] introduces the notion of perfect resilience, resilience to
arbitrary failures. Chiesa et al. [39] focus on “scalable” static failover
schemes that rely only on the destination address, the packets incoming
link, and the set of nonfailed links incident to the router. The authors
find that per-incoming link destination-based forwarding tables are a
necessity as destination-based routing alone is unable to achieve ro-
bustness against even a single link failure, and, moreover, entails
computationally hard challenges. In [38], Chiesa et al. study failover
routing in different models with and without packet marking but also
with duplication, and present several new algorithms, in contrast to our
paper, also considering the stretch but also deriving impossiblity re-
sults.

Stephens et al. [37,40] present a new forwarding table compression
algorithm called Plinko [37,40], which however cannot provide ro-
bustness guarantees in all possible failure scenarios. Chiesa et al. [42]
recently proposed a systematic algorithmic study of the resiliency of
immediate failover in a variety of models.

More generally, from an algorithmic perspective, our work is related
to the field of graph exploration, see, e.g. [43–46] for an overview. In
particular, the deterministic analogue of our stateless random walk is
known as the rotor router (sometimes also called Propp machine or
Eulerian walkers), and has been studied in various contexts before
[47,48].

Bibliographic note.First ideas leading to this paper have been pre-
sented at the SIGCOMM HotSDN 2014 [49] workshop as well as at the
HotNets 2014 workshop [50]. In [49], we presented two graph tra-
versals: one based on Depth-First Search (DFS) and another one based
on Breadth-First Search (BFS) resp. IDDFS. These algorithms provide
guaranteed connectivity, however they require a non-trivial amount of
header space for tagging (linear in n). In the current full version of the
paper, we present more efficient failover schemes and a more com-
prehensive study of traversal mechanisms, also showing that stateful
mechanisms are possible, and discussing different applications. In [50],
we observed the possibility to implement more stateful network func-
tions using existing OpenFlow versions; the latter has also been ob-
served independently by Bianchi et al. [17].

8. Conclusion

According to a recent Communications of the ACM article [2], the
possibility to render failover more predictable was one of the key rea-
sons for Google to move to an SDN solution. An attractive solution to
implement a fast failover relies on inband mechanisms: a local fast

failover can serve as a first line of defense, before the controller sub-
sequently can rigorously optimize the route allocation. However, not
much is known today about how to exploit such inband mechanisms,
nor what are their limitations.

This paper showed the feasibility of very robust inband network
traversals in OpenFlow networks. Such traversals can form the basis for
critical services of dependable networks, such as robust routing or
connectivity testing. We have demonstrated traversals in three basic
models: a simple stateless model (using a random walk scheme), a
model with packet tagging (using spanning tree search) and a model
with state at switches or in hosts (e.g., storing recently discovered
shortest paths).

Our approach is optimized toward a worst-case: our network tra-
versals ensure packet delivery even under a large number of link fail-
ures, as long as the source and the destination are still physically con-
nected. In practice, such a rigorous approach may only be worthwhile
for a subset of very critical flows (e.g., control flows between switches
and controllers): non-critical flows can simply be dropped.

We hope that our paper can inform the community of what degree
of robustness can be achieved in today’s OpenFlow protocol and what
tradeoffs exist, and also nourish the ongoing discussion of what can and
should be implemented in the data plane.

Together with this paper, we will make available the source code of
a canonical robust traversal algorithm presented in this paper.

Acknowledgments

The authors would like to thank Leszek Antoni Gasieniec for several
discussions. Liron Schiff is supported by the European Research Council
(ERC) Starting Grant no. 259085 and by the Israel Science Foundation
Grant no. 1386/11. Stefan Schmid is supported by the Danish Villum
Foundation project ReNet.

References

[1] N. Feamster, J. Rexford, E. Zegura, The road to SDN, Queue 11 (12) (2013).
[2] A. Vahdat, D. Clark, J. Rexford, A purpose-built global network: Google’s move to

SDN, Queue 13 (8) (2015) 100.
[3] J. Liu, A. Panda, A. Singla, B. Godfrey, M. Schapira, S. Shenker, Ensuring con-

nectivity via data plane mechanisms, Proceedings of the Tenth USENIX Conference
on Networked Systems Design and Implementation, (2013), pp. 113–126.

[4] N. Solomon, Y. Francis, L. Eitan, Floodlight openflow ddos, (2013) www.Slideshare.
net.

[5] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, R. Kompella, Towards an Elastic
Distributed SDN Controller, Proceedings of the THotSDN, (2013).

[6] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,
Y. Iwata, H. Inoue, T. Hama, S. Shenker, Onix: a distributed control platform for
large-scale production networks, Proceedings of the Ninth USENIX Conference on
Operating Systems Design and Implementation (OSDI), (2010).

[7] S.H. Yeganeh, Y. Ganjali, Beehive: towards a simple abstraction for scalable soft-
ware-defined networking, Proceedings of the HotNets, (2014).

[8] M. Canini, P. Kuznetsov, D. Levin, S. Schmid, A distributed and robust SDN Control
plane for transactional network updates, Proceedings of the IEEE INFOCOM,
(2015).

[9] N. Katta, H. Zhang, M. Freedman, J. Rexford, Ravana: controller fault-tolerance in
software-defined networking, Proceedings of the ACM SOSR, (2015).

[10] A. Akella, A. Krishnamurthy, A highly available software defined fabric,
Proceedings of the HotNets, (2014).

[11] L. Schiff, S. Schmid, M. Canini, Medieval: towards a self-stabilizing, plug & play, in-
band SDN control network, Proceedings of the ACM Sigcomm Symposium on SDN
Research (SOSR), (2015).

[12] anonymous, Robust routing in openflow, (2014) http://tinyurl.com/z5lzdga.
[13] A.R. Curtis, et al., Devoflow: scaling flow management for high-performance net-

works, Proceedings of the SIGCOMM, (2011), pp. 254–265.
[14] S. Zhang, S. Malik, S. Narain, L. Vanbever, In-band update for network routing

policy migration, Proceedings of the International Conference on Network Protocols
(ICNP), (2014), pp. 356–361.

[15] O. Tilmans, S. Vissicchio, IGP-as-a-backup for robust SDN networks, Proceedings of
the Tenth International Conference on Network and Service Management (CNSM),
(2014).

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,
D. Talayco, A. Vahdat, G. Varghese, D. Walker, P4: programming protocol-in-
dependent packet processors, SIGCOMM Comput. Commun. Rev. 44 (3) (2014)
87–95.

[17] G. Bianchi, M. Bonola, A. Capone, C. Cascone, Openstate: programming platform-

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

182

http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0003
http://www.Slideshare.net
http://www.Slideshare.net
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0011
http://tinyurl.com/z5lzdga
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0017

independent stateful openflow applications inside the switch, SIGCOMM Comput.
Commun. Rev. (CCR) 44 (2) (2014) 44–51.

[18] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network
architecture, ACM SIGCOMM Comput. Commun. Rev. 38 (4) (2008) 63–74.

[19] J.B. Leners, T. Gupta, M.K. Aguilera, M. Walfish, Taming uncertainty in distributed
systems with help from the network, Proceedings of the Tenth EuroSys, (2015).

[20] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner, Openflow: enabling innovation in campus networks,
SIGCOMM Comput. Commun. Rev. 38 (2) (2008) 69–74.

[21] C. Filsfils, N.K. Nainar, C. Pignataro, J.C. Cardona, P. Francois, The segment routing
architecture, Global Communications Conference (GLOBECOM), IEEE, 2015,
pp. 1–6.

[22] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, C. Diot,
Characterization of failures in an ip backbone, Proceedings of the IEEE INFOCOM, 4
(2004), pp. 2307–2317.

[23] D. Turner, K. Levchenko, A.C. Snoeren, S. Savage, California fault lines: under-
standing the causes and impact of network failures, ACM SIGCOMM Comput.
Commun. Rev. 41 (4) (2011) 315–326.

[24] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, R. Wattenhofer,
Achieving High Utilization with Software-Driven WAN, Proceedings of the
SIGCOMM, (2013).

[25] P. Gill, N. Jain, N. Nagappan, Understanding network failures in data centers:
measurement, analysis, and implications, 41 (2011), pp. 350–361.

[26] H.H. Liu, S. Kandula, R. Mahajan, M. Zhang, D. Gelernter, Traffic engineering with
forward fault correction, 44 (2014), pp. 527–538.

[27] J. Feigenbaum, Ba: On the resilience of routing tables, Proceedings of the ACM
Symposium on Principles of Distributed Computing (PODC), (2012), pp. 237–238.

[28] G. Enyedi, G. Rétvári, T. Cinkler, A novel loop-free ip fast reroute algorithm,
Dependable and Adaptable Networks and Services, Springer, 2007, pp. 111–119.

[29] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, C.-N. Chuah, Fast local rerouting for
handling transient link failures, IEEE/ACM Trans. Netw. (ToN) 15 (2) (2007)
359–372.

[30] J. Wang, S. Nelakuditi, IP fast reroute with failure inferencing, Proceedings of the
SIGCOMM Workshop on Internet Network Management, (2007), pp. 268–273.

[31] T. Elhourani, A. Gopalan, S. Ramasubramanian, IP fast rerouting for multi-link
failures, Proceedings of the IEEE INFOCOM, IEEE, 2014, pp. 2148–2156.

[32] E. Gafni, D. Bertsekas, Distributed algorithms for generating loop-free routes in
networks with frequently changing topology, IEEE Trans. Commun. 29 (1) (1981)
11–18.

[33] J. Liu, B. Yan, S. Shenker, M. Schapira, Data-driven network connectivity,
Proceedings of the HotNets, (2011), pp. 8:1–8:6.

[34] A. Atlas, et al., U-turn alternates for IP/LDP fast-reroute, IETF Internet Draft (2006).
[35] B. Yang, J. Liu, S. Shenker, J. Li, K. Zheng, Keep forwarding: towards k-link failure

resilient routing, Proceedings of the IEEE INFOCOM, (2014), pp. 1617–1625.

[36] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, I. Stoica,
Achieving convergence-free routing using failure-carrying packets, Proceedings of
the ACM SIGCOMM, (2007), pp. 241–252.

[37] B. Stephens, A.L. Cox, S. Rixner, Plinko: building provably resilient forwarding
tables, Proceedings of the Twelfth ACM HotNets, (2013).

[38] M. Chiesa, A.V. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy, M. Schapira,
S. Shenker, On the resiliency of randomized routing against multiple edge failures,
Proceedings of the Forty-Third International Colloquium on Automata, Languages,
and Programming (ICALP), (2016), pp. 134:1–134:15.

[39] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy, A. Panda, M. Schapira,
S. Shenker, Exploring the limits of static resilient routing, Proceedings of the IEEE
INFOCOM, (2016).

[40] B. Stephens, A.L. Cox, S. Rixner, Scalable multi-failure fast failover via forwarding
table compression, SOSR. ACM (2016).

[41] M. Borokhovich, S. Schmid, How (not) to shoot in your foot with SDN local fast
failover: a load-connectivity tradeoff, Proceedings of the Seventeenth International
Conference on Principles of Distributed Systems (OPODIS), (2013).

[42] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry, M. Schapira,
S. Shenker, The quest for resilient (static) forwarding tables, Proceedings of the
IEEE INFOCOM, (2016).

[43] G. Barnes, W.L. Ruzzo, Deterministic algorithms for undirected s-t connectivity
using polynomial time and sublinear space. Proceedings of the Twenty-Third
Annual ACM Symposium on Theory of Computing (STOC), (1991), pp. 43–53.

[44] O. Reingold, Undirected connectivity in log-space, J. ACM 55 (4) (2008)
17:1–17:24.

[45] M. Patrascu, M. Thorup, Planning for fast connectivity updates, Proceedings of the
Forty-Eight Annual IEEE Symposium on Foundations of Computer Science (FOCS),
(2007), pp. 263–271.

[46] S. Istrail, Polynomial universal traversing sequences for cycles are constructible,
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC), (1988), pp. 491–503.

[47] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, A. Kosowski, Euler tour
lock-in problem in the rotor-router model: I choose pointers and you choose port
numbers, Proceedings of the Twenty-Third International Conference on Distributed
Computing (DISC), (2009), pp. 423–435.

[48] V.B. Priezzhev, D. Dhar, A. Dhar, S. Krishnamurthy, Eulerian walkers as a model of
self-organized criticality, Phys. Rev. Lett. 77 (25) (1996) 5079.

[49] M. Borokhovich, L. Schiff, S. Schmid, Provable data plane connectivity with local
fast failover: introducing openflow graph algorithms, Proceedings of the ACM
SIGCOMM HotSDN, (2014).

[50] L. Schiff, M. Borokhovich, S. Schmid, Reclaiming the brain: useful openflow func-
tions in the data plane, Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets), (2014).

M. Borokhovich et al. Computer Communications 116 (2018) 172–183

183

http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0033
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0032a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0035
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0039
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0040
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0040
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0040
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0041
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0042
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0042
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0042
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0043
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0043
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0044
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0044
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0044
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0045
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0045
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0045
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0046
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0046
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0046
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0046
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0043a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0043a
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0048
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0048
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0048
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0049
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0049
http://refhub.elsevier.com/S0140-3664(16)30647-8/sbref0049

	The show must go on: Fundamental data plane connectivity services for dependable SDNs
	Introduction
	Motivation
	Challenges of inband mechanisms
	The case for robust inband traversals
	Our contributions
	Organization

	Background and model
	SDN and OpenFlow
	Model

	Stateless robust inband network traversal
	Predictable traversals with tagging
	More efficient traversals with tagging
	Alternative: Iterative Depth-DFS

	Short routes with state
	In-band registers
	Host-based registers
	Aggregating paths for host-based registers
	Following paths stored in host-based registers

	Applications
	Failover routing
	Using plain traversals
	Improved version: Spanning trees with inband registers
	Shortest paths with inband and host registers

	Connectivity queries
	One time queries
	Connectivity service

	Related work
	Conclusion
	Acknowledgments
	References

